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Abstract
Microscopic theory of energy- and time-resolved (ER- and TR-) two-photon
photoemission (2PPE) from metal surfaces is presented from the viewpoint of
many-body dynamics of the electron system. The effects of hole dynamics
in the occupied states at the surfaces are investigated by the nonequilibrium
Green function method. In the macroscopic theory based on the density matrix
method, it is usually considered that dephasing is due to elastic scattering and
energy relaxation is due to inelastic scattering; however, it is demonstrated
that inelastic electron–electron scattering of the photoexcited holes from the
occupied states to the bulk can account for both dephasing and acceleration of
energy relaxation. On the basis of analytical and numerical analyses for ER-
and TR-2PPE on Cu(111), the relations of the macroscopic relaxation times
with the electron and hole lifetimes are clarified.

1. Introduction

Recently, as well as the energetic structures, the dynamical properties of solid surfaces
are attracting interest from researchers in chemistry and optics. By means of two-photon
photoemission (2PPE) spectroscopy using ultraviolet and visible light, we can obtain
information on the properties of electrons and holes in occupied and unoccupied states
from several electron volts below the Fermi energy (chemical potential) to the vacuum level.
Electrons and holes excited by the light survive over femtosecond to picosecond timescales
and can cause photochemical reactions and light emission. The timescale of the reactions to
the input of light is determined by the rate of scattering of the photoexcited electrons and holes.
From a macroscopic viewpoint, the scattering results in energy relaxation, i.e., density decay
observed as the relaxation of energy from the partial system of interest to the reservoir, and
dephasing, i.e., loss of quantum coherence.
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By means of macroscopic analysis based on the density matrix method, we can obtain
the energy relaxation time T1 and the dephasing time T2. This method was first developed
for atomic systems in which, mainly, the energy relaxation occurs due to radiative relaxation,
and the dephasing occurs due to atomic collisions [1]. By modifying the explanation of the
relaxation mechanisms, this theory can also be applied to solids where interactions involving
lattice vibrations as well as electrons and photons can take place, so that the degree of freedom
of quasielastic and inelastic scattering becomes large [2]. For example, in semiconductors,
the energy relaxation can occur due to cascade processes (inelastic scattering) as well as the
radiative relaxation, and the dephasing can occur due to (quasi-) elastic scattering around
defects and impurities.

Owing to the recent development of femtosecond laser technology, experiments of 2PPE
spectroscopy on metal surfaces, e.g., for Cu, Ag, Pt and Ni [3–11], which have image-
potential-induced surface states (image states), have become active [12]. By applying the
above macroscopic theory to analysis of the energy- and time-resolved (ER- and TR-) 2PPE
spectra [13, 14], T1 and T2 can be estimated in the same way as for semiconductors. In the
discussion of the results obtained, it is usually assumed that T1 corresponds to the intrinsic
lifetime of the image state and T2 represents an index of thermal fluctuation or strength of
(quasi-) elastic scattering at adsorbates or steps on the surfaces. However, the validity of
such treatments is not clear since the available phase space for inelastic electron–electron
scattering in metals can be much larger than that for semiconductors, as recognized by the
experimental and theoretical studies from the viewpoint of excitation mechanisms [15–23], so
that the dominant relaxation mechanisms become fundamentally different from the case for
semiconductors.

Then we reconsider the relaxation mechanisms at metals. For this purpose, we give
an example of 2PPE from Cu(111) that has been investigated extensively by means of both
experiments and theories [3, 13, 18, 20, 24–29]. Cu(111) surfaces have a projected band
gap in the surface normal direction, where an occupied surface state (the Shockley state at
εq−εF = −0.45 eV) and an unoccupied surface state (the n = 1 image state at εk−εF = 4.1 eV)
are located within the gap. Here, εF denotes the Fermi level. When the pump photon energy
h̄ωpu is slightly detuned from the resonance εk − εq , the 2PPE energy spectra exhibit two
peaks: the SS peak at εq + h̄ωpu + h̄ωpr and the IS peak at εk + h̄ωpr, where h̄ωpr denotes the
probe photon energy. The SS peak occurs due to the direct two-photon process in which the
excitation by the pump photon is immediately followed by the excitation by the probe photon
via a virtual intermediate state. Meanwhile, it is considered that the IS peak occurs due to
scattering which results in dephasing [3, 13, 14].

Macroscopically, 2PPE from this system can be described by a three-level model based
on the density matrix method. Usually, an initial state |0〉, an intermediate state |1〉 and a
final state |2〉 are introduced (see figure 1(a)), where |2〉 has an infinite lifetime and T1 and T2

are given for the two-level system consisting of |0〉 and |1〉 (it is noted that extended versions
of this model can be introduced by assuming the dephasing times between |2〉 and the other
states). It is known that the simulations by this model can reproduce the experimental pump–
probe correlation traces (photoelectron intensities as functions of the pump–probe delay time),
choosing T1 and T2 as free parameters [3], although the physical meanings of the parameters
are still unclear.

From a microscopic viewpoint, the pump laser excites a hole in the occupied surface state
|q〉 and an electron in the unoccupied state |k〉 (see figure 1(b)). Then the electron in |k〉 can be
inelastically scattered due to interactions with the electron system in the bulk so that |k〉 has a
finite lifetime τk . It is usually assumed that the density of |k〉 decreases until the excitation by
the probe laser to the free electron state | f 〉 above the vacuum level occurs so that τk = T1 is
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Figure 1. (a) The three-level model of 2PPE used in the macroscopic theory. |0〉, |1〉 and |2〉
denote the initial, intermediate and final states. The energy relaxation T1 and the dephasing T2 are
introduced between |0〉 and |1〉. (b) A schematic diagram of a microscopic model of 2PPE from
metal surfaces considering the inelastic electron–electron scattering involving an occupied state
|q〉 and an unoccupied state |k〉. | f 〉 denotes a free electron state above the vacuum level.

measured as the decay time of the pump–probe correlation trace. Then quantitative analyses
of T1 were attempted by the direct comparison between the experimental T1 and the theoretical
τk , as the inverse of the imaginary part of the self-energies of the unoccupied electron states [7].

However the analysis of T2 has been limited to being qualitative. Meanwhile, in the same
way as the electron in |k〉, the hole in |q〉 will decay due to inelastic scattering so that |q〉 has
a finite lifetime τq although its effect on the relaxation has not been discussed in the usual
analyses. The hole decay accompanies excitation of secondary electrons and holes, and hence
will result in electron thermalization which causes dephasing by repeating the scattering. In
order to clarify the relations between the hole decay and the dephasing, the author and co-
workers have investigated the TR- and ER-2PPE spectra of metal surfaces by means of many-
body theories based on the nonequilibrium Green function method [24–26, 30]. In the studies,
it has been shown in time and energy domains, respectively, that as well as the dephasing the
hole scattering can account for the energy transfer between the surface and the bulk so that the
energy relaxation of the ‘two-level system’ consisting of |q〉 and |k〉 is accelerated.

In this paper, summarizing the results from the TR- and ER-2PPE spectra, the relations
of T1 = h̄/2Γ1 and T2 = h̄/Γ2 with τk = h̄/2γk and τq = h̄/2γq are investigated in detail.
By analysing the spectral widths in the energy spectra for continuous light as functions of
h̄ω (=h̄ωpu = h̄ωpr), it is shown that Γ1 depends on h̄ω whereas Γ2 = γq is independent of
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h̄ω. Meanwhile, in the femtosecond TR spectra for h̄ωpu = εk − εq − 0.1 eV, it is shown that
T1 ∼ [τ−1

k + τ−1
q ]−1 and T2 ∼ τq . Referring to the analytical results, the above differences

between the analyses in time and energy domains are discussed.

2. Theory

The model electron system is described by a Hamiltonian H0 + V , where the unperturbed
Hamiltonian is given by

H0 = εq c†
qcq + εkc†

kck +
∑

f

ε f c†
f c f +

∑
p

εpc†
pcp, (2.1)

and the Coulomb interactions between electrons by

V = 1
2

∑
κ,λ,µ,ν

Vκλ/µνc†
λc†

κcµcν (κ, λ, µ, ν = q, k, f, p). (2.2)

Here E , c† and c denote the energy and the creation and annihilation operators, respectively,
for the states given by the indices, where p denotes a bulk state and the others are the same
as those defined in section 1. For simplicity, the degree of freedom of the spin is implied in
the indices of the electron states. By introducing the interactions of an electron with the laser
pulses,

W (t) =
∑

f

W f k(t)c
†
f ck + Wkq (t)c†

k cq + H.c., (2.3)

the photoelectron density ρ f f (t) is obtained by solving the Liouville equation,

ih̄
∂ρ(t)

∂ t
= [H0 + V + W (t), ρ(t)], (2.4)

where ρ(t) denotes the density matrix in the Schrödinger representation.
By expanding with respect to V + W (t), ρ f f (t) is obtained as a sum of multiple integrals

of many-body correlation functions [31]. Then, by expanding the correlation functions into
products of one-body functions, we obtain

ρ f f (tob) = −ih̄
∫ −∞

∞
dt ′

1

∫ −∞

∞
dt ′

2

∫ ∞

−∞
dt2

∫ ∞

−∞
dt1

× θ(tob − t ′
2)θ(t ′

2 − t ′
1)θ(tob − t2)θ(t2 − t1)

× Wqk(t
′
1)Wk f (t

′
2)W f k(t2)Wkq (t1)

× G++
f f (tob − t2)G++

kk (t2 − t1)

× G+−
qq (tob − t1, t ′

1 − tob)

× G−−
kk (t ′

1 − t ′
2)G−−

f f (t ′
2 − tob), (2.5)

where tob is the observation time of the photoelectron and θ(t) is a step function. Here the V s
are renormalized into the nonequilibrium Green functions defined by a (2 × 2) matrix [25],

G(t, t ′; tob) =
(

G++(t, t ′; tob) G+−(t, t ′; tob)

G−+(t, t ′; tob) G−−(t, t ′; tob)

)
. (2.6)

G++ and G−− are causal and anti-causal Green functions, respectively, that satisfy
G++

µν(t, t ′; tob) = [G−−
νµ (t ′, t; tob)]∗, for which the tob dependence is usually negligible so

that G++ and G−− can be expressed as functions of t − t ′. Assuming a constant decay rate
represented by a lifetime τk = h̄/2γk , G++

kk (t − t ′) is given by

G++
kk (t − t ′) = (ih̄)−1{[1 − f (εk)]θ(t − t ′)e(−iεk−γk )(t−t ′)/h̄

− f (εk)θ(t ′ − t)e(iεk −γk )(t ′−t)/h̄ }, (2.7)
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where f (E) denotes the Fermi distribution function. For simplicity, it is assumed that the
energy shift due to the scattering is implied in εk . The decay of G++

f f (t − t ′) is assumed to be
negligible since the photoelectrons will be excited outside the surface and leave the surface
immediately so that no scattering with the bulk electrons can occur.

G+−(t, t ′; tob) = G+−(tob − t, t ′ − tob) is an interbranch function in which t and t ′ give the
times in the forward and backward branches, respectively, of the Keldysh contour [25]. The
lowest order term of G+−

qq is given by

G+− [1]
qq (tob − t, t ′ − tob) = −ih̄θ(tob − t)θ(tob − t ′)G++

qq(t − tob)G−−
qq (tob − t ′)

= −(ih̄)−1[ f (εq)]
2θ(tob − t)θ(tob − t ′)

× e(iεq−γq )(tob−t)/h̄ e(−iεq−γq )(tob−t ′)/h̄ . (2.8)

For t = t ′, this term represents the decay of the hole density in |q〉 due to the inelastic scattering
after an instantaneous excitation at t:

|G+− [1]
qq (tob − t, t − tob)| = h̄−1[ f (εq)]2θ(tob − t)e−(tob−t)/τq . (2.9)

Then, for W f k(t) ∝ δ(t − td) and Wkq (t) ∝ δ(t), we obtain the photoelectron density as [24]

ρ
[1]
f f (tob; td) ∝ θ(td)e−td/τk θ(tob − td)e−tob/τq . (2.10)

Here, δ(t) denotes the δ function and td the pump–probe delay time. This shows that the
most electrons are photoemitted within the time from t = td to td + τq , where t = 0 is the
time of the excitation by the pump, and at large tob the probability of photoemission becomes
small because of the loss of coherence due to the hole decay. Assuming that the measured
photoelectron intensity I f (td) is proportional to the integral of ρ f f (tob; td) over tob, the lowest
order term of I f (td) is obtained as

I [1]
f (td) ∝

∫ ∞

−∞
dtob ρ

[1]
f f (tob; td)

∝ θ(td) exp[−td(τ
−1
k + τ−1

q )]. (2.11)

This shows that the energy dissipation from the surface to the bulk due to the decay of a
polarization consisting of the electron in |k〉 and the hole in |q〉 accounts for the macroscopic
energy relaxation, so that the lifetime of the intermediate state of the 2PPE process corresponds
to the lifetime of the polarization rather than τk .

The inelastic hole scattering can result in the excitation of secondary electrons and holes
in the bulk expressed by the higher order terms of G+−(tob − t, t ′ − tob) with respect to V ; for
example, the second-order term is given by [25]

G+− [2]
qq (tob − t, t ′ − tob) = −(ih̄)−1[ f (εq)]2θ(tob − t)θ(tob − t ′)

×
∑

κ

∑
µ

∑
ν

[1 − f (εκ)] f (εµ) f (εν)[Vµν/qκ Vκq/νµ − Vµν/qκ Vκq/µν]

× [(εq + εκ − εµ − εν)
2 + (γq − γκ − γµ − γν)

2]−1

× {e(iεq−γq )(tob−t)/h̄ − e[i(εκ −εµ−εν )−(γκ +γµ+γν)](tob−t)/h̄}
× {e(−iεq−γq )(tob−t ′)/h̄ − e[−i(εκ −εµ−εν )−(γκ +γµ+γν)](tob−t ′)/h̄}, (2.12)

where κ in the summation is an index for the secondary electron, and µ and ν are for the
secondary holes. The effects of the second-order processes are discussed in the following
sections.
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Figure 2. 2PPE energy spectra of Cu(111) obtained from the microscopic theory.

3. Energy spectra

Giving Wµν(t) = [Wνµ(t)]∗ = Wµν exp(−iωt), the form of the 2PPE energy spectrum for
single-colour continuous light [26] is obtained as

I [ε f ] ∝ ρ f f = |W f k Wkq |2[(ε f − εq − 2h̄ω)2 + γ 2
q ]−1[(εk − εq − h̄ω)2 + (γk + γq)

2]−1

×
{

1 +
∑

κ

∑
µ

∑
ν

[1 − f (εκ )] f (εµ) f (εν)[Vµν/qκ Vκq/νµ − Vµν/qκ Vκq/µν]

× 1

(ε f + εκ − εµ − εν − 2h̄ω)2 + (γκ + γµ + γν)2

× 1

(εk + εκ − εµ − εν − h̄ω)2 + (γk + γκ + γµ + γν)2

× |(ε f − 2h̄ω) + (εk − h̄ω − iγk) + (−εq − iγq)

+ [εκ − εµ − εν − i(γκ + γµ + γν)]|2
}
. (3.1)

The first term in the braces accounts for the SS peak (identical to the 2ω peak in the single-
colour 2PPE) due to a process where first an electron in |q〉 is photoexcited to |k〉 virtually and
subsequently it is photoexcited to | f 〉. The second term accounts for the IS (1ω) peak due to
processes where, after the virtual electron photoexcitation from |q〉 to |k〉, the hole in |q〉 is
scattered inelastically by the bulk electrons and subsequently the electron in |k〉 is photoexcited
to | f 〉.

Figure 2 shows the 2PPE spectra of Cu(111) for −100, 0 and +100 meV detunings.
The energy levels and lifetimes of |q〉 and |k〉 are given as parameters from the literature on
theoretical work: εq − εF = −0.445 eV and τq = 26 fs (γq = 12.7 meV) for the Shockley
state [27] and εk −εF = 4.12 eV and τk = 23 fs (γk = 14.3 meV) for the image state [28]. The
lifetime of a bulk electron in |p〉 is given as 30 fs for |εp − εF| = 1 eV [29] within the Fermi
liquid theory [32]. Here a flat density of states for the bulk electrons is assumed. For simplicity,
Vµν/qκ Vκq/νµ − Vµν/qκ Vκq/µν in (2.12) and (3.1) is assumed to be a constant value which gives
γq = 12.7 meV by calculation of the self-energy within the second order with respect to V .

For ±100 meV detunings, the peak at 4.12 eV is attributable to the IS peak and the
peak at 4.12 ± 0.10 eV to the SS peak. The occurrence of the IS peak is due to the energy
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Figure 3. A schematic diagram of the 2PPE processes accounting for the SS and IS peaks at
Cu(111). k‖ denotes the parallel component of the wavevector with respect to the surface. The
shaded area shows the continuum. The thick vertical arrows denote the photoexcitation by the
pump and probe laser. The pump energy is slightly smaller than the resonance εk − εq (the broken
part of the thick arrow denotes the detuning). The thin arrows connected with a wave denote the
inelastic electron–electron scattering.

transfer between the surface and the bulk accompanying the inelastic scattering of the hole
(see figure 3). Macroscopically, this effect is explained by the quasielastic scattering of the
virtual polarization at the surface consisting of the electron in |k〉 and the hole in |q〉 into a real
polarization consisting of the electron in |k〉 and the secondary electrons and holes in the bulk.
For 0 detuning, the processes accounting for the two peaks interfere with each other, and a strong
peak is observed at 4.12 eV. The two-peak structure agrees with the experiments [4, 11] except
for the sharp structure on the SS peak. This structure is due to the excitation of the secondary
electrons and holes with infinitesimal excitation energies accompanied by the quasielastic hole
transfer from the surface to the bulk, i.e., a sort of Fermi surface effect. Thus the structure
may vanish when the higher order terms are renormalized into G+− [2]

qq . This problem will be
an important future subject.

From macroscopic theory, the form of the 2PPE spectra was obtained as [26]

I macro[ε2] ∝ ρmacro
22 ∝ 1

(ε2 − ε0 − 2h̄ω)2 + Γ 2
2

1

(ε2 − ε1 − h̄ω)2 + Γ 2
1

, (3.2)

where Γ1 = h̄/2T1 and Γ2 = h̄/T2. It is clear that this equation shows the two-peak structure
in the same way as the microscopic theory. On comparing this with (3.1), the relation Γ2 = γq

at the SS peak is immediately understood whereas the relation of Γ1 with γk and γq is not clear
yet.

In order to clarify the relations of Γ1 and Γ2 with γk and γq in detail, numerical analyses of
the spectral widths are made. A sum of two Lorentzians is fitted to each spectrum by the least
squares method so that the widths of the IS and SS peak structures are obtained [26]. Figure 4
shows the results for −400 meV < �E < +400 meV with the results from macroscopic
theory for Γ1 = γk and Γ2 = γq . Here, �E = h̄ω − (εk − εq) denotes the detuning of the
pump energy from the resonance. The widths of the SS peak structure agree extremely well
between the microscopic and macroscopic theories. The effect of interference [33] between
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Figure 4. Energy widths of (a) the SS peak and (b) the IS peak structures in the 2PPE spectrum
of Cu(111) as functions of the detuning �E = h̄ω − (εk − εq ). The solid curves show the results
from the microscopic theory. The dashed curves show the results from the macroscopic theory for
Γ1 = γk and Γ2 = γq .

the processes accounting for the SS and IS peaks is manifested in the dip structure in the
vicinity of the resonance in which the two processes enhance with each other so that the
peak structures in the spectra become narrow. The energy width of the SS peak structure
converges to 2Γ2 = 2γq = 25.4 meV for large detuning. This result clearly demonstrates the
correspondence between the hole decay and the dephasing.

Qualitatively, in the same way as the SS peak, the energy width of the IS peak structure
becomes narrow in the vicinity of the resonance due to the interference effect. However,
contrary to the SS peak case, the energy width is quantitatively different for the microscopic
and macroscopic theories. In the macroscopic theory, the width converges to 2Γ1 = 2γk =
28.6 meV for large detuning. Meanwhile, in the microscopic theory, the width is close to
2γk for �E = εq − εF = −0.45 eV, and increases for large �E so that the peak structure
undergoes a collapse accompanied by the decrease of the peak height (13% of the SS peak
for �E = 400 meV). Here, the increase of the width for �E < −300 meV is due to the
collapse of the peak structure in the vicinity of the Fermi cut-off. Ignoring the region near the
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resonance, the difference in width between the two theories is approximately proportional to
[h̄ω − (εk − εF)]2 = [�E + (εF − εq)]2, i.e., the available phase space for the hole scattering.
This means that Γ1 is obtained as a function of �E when fitting the macroscopic theory to the
results from the microscopic theory for each �E , giving Γ1 and Γ2 as free parameters. The
measurement of the widths of the peak structures as functions of �E has been attempted [34];
however, it will be an issue for the future to accumulate sufficient high resolution experimental
spectra to compare with figure 4.

4. Time-resolved spectra

In order to obtain the TR-2PPE spectra, the matrix elements of W are given by

Wkq (t) = −MkqE(t)e−iωpu t (4.1)

and

W f k(t; td) = −M f kE(t − td)e−iωpr t , (4.2)

where E(t) is the pulse envelope function. Giving E(t) = Ēθ(t) exp(−γ�t/2h̄), the analytical
form of the photoelectron intensity is obtained as

I (td) ∝
∫ ∞

−∞
dt ρ f f (t; td)

= |M f k Mkq |2|Ē|4[ Î [1](td) + Î [2](td)], (4.3)

where

Î [1](td) =
∫ ∞

−∞
dt ρ

[1]
f f (t; td)

= a[1]
1 [θ(td)e−2(γk +γq )td/h̄ + θ(−td)eγ�td/h̄ ]

+ 2 Im
[
a[1]

2 {θ(td)e[i(εk −εq−h̄ωpu)−(γk +γq )−γ�/2]td/h̄ + θ(−td)eγ�td/h̄}]
+ a[1]

3 [θ(td)e
−γ�td/h̄ + θ(−td)e

γ�td/h̄ ], (4.4)

Î [2](td) =
∫ ∞

−∞
dt ρ

[2]
f f (t; td)

=
∑

κ

∑
µ

∑
ν

[1 − f (εκ)] f (εµ) f (εν)[Vµν/qκ Vκq/νµ − Vµν/qκ Vκq/µν]

× [(εq + εκ − εµ − εν)
2 + (γq − γκ − γµ − γν)

2]−1

× F(εκ − εµ − εν, γκ + γµ + γν; td), (4.5)

F(ε, γ ; td) = a[2]
1 (εq , γq)

[
θ(td)e−2(γk +γq )td/h̄ + θ(−td)eγ�td/h̄

]
+ a[2]

1 (ε, γ )
[
θ(td)e−2(γk +γ )td/h̄ + θ(−td)eγ�td/h̄

]
+ 2 Im

[
a[2]

2 (εq , ε, γq , γ )

× [
θ(td)e

[i(εk −εq−h̄ωpu)−(γk +γq +γ�/2)]td/h̄ + θ(−td)e
γ�td/h̄

]
+ a[2]

2 (ε, εq , γ , γq)
[
θ(td)e[i(εk−ε−h̄ωpu)−(γk +γ +γ�/2)]td/h̄ + θ(−td)eγ�td/h̄

]
+ a[2]

3 (εq , ε, γq , γ )
[
θ(td)e

[i(εq−ε)−(2γk +γq +γ )]td/h̄ + θ(−td)e
γ�td/h̄

]]

+
[
a[2]

4 (εq, γq) + a[2]
4 (ε, γ ) + a[2]

5 (εq , ε, γq , γ )
]

× [
θ(td)e−γ�td/h̄ + θ(−td)eγ�td/h̄

]
, (4.6)
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a[1]
1 = h̄2

(ε f − εk − h̄ωpr)2 + (γk + γ�/2)2

×
[

h̄

2γq
− h̄(2γk + 4γq + γ�)

(ε f − εk − h̄ωpr)2 + (γk + γ�/2 + 2γq)2
+

h̄

2(γk + γq + γ�)

]
, (4.7)

a[1]
2 = h̄

ε f − εk − h̄ωpr − i(γk + γ�/2)

h̄

ε f − εq − h̄ωpu − h̄ωpr − i(γq − γ�)

×
[

h̄

i2γq
− h̄

ε f − εq − h̄ωpu − h̄ωpr + i(γq + γ�)

+
h̄

ε f − εk − h̄ωpr − i(γk + γ�/2 + 2γq)

+
h̄

εk − εq − h̄ωpu + i(γk + γq + 3γ�/2)

]
, (4.8)

a[1]
3 = h̄2

(ε f − εq − h̄ωpu − h̄ωpr)2 + (γq − γ�)2

×
[

h̄

2γq
− 2h̄(γq + γ�)

(ε f − εq − h̄ωpu − h̄ωpr)2 + (γq + γ�)2
+

h̄

2γ�

]
, (4.9)

a[2]
1 (ε, γ ) = h̄2

(εk − ε − h̄ωpu)2 + (γk + γ − γ�/2)2

h̄2

(ε f − εk − h̄ωpr)2 + (γk + γ�/2)2

×
[

h̄

2γ
− 2h̄(γk + 2γ + γ�/2)

(ε f − εk − h̄ωpr)2 + (γk + γ�/2 + 2γ )2
+

h̄

2(γk + γ ) + γ�

]
, (4.10)

a[2]
2 (ε, ε ′, γ , γ ′) = h̄

ε f − εk − h̄ωpr − i(γk + γ�/2)

×
{

h̄2

(εk − ε − h̄ωpu)2 + (γk + γ − γ�/2)2

h̄

ε f − ε − h̄ωpu − h̄ωpr − i(γ − γ�)

×
[

h̄

i2γ
− h̄

ε f − ε − h̄ωpu − h̄ωpr − i(γ + γ�)

+
h̄

ε f − εk − h̄ωpr − i(γk + γ�/2 + 2γ )
+

h̄

εk − ε − h̄ωpu + i(γk + γ + 3ε�/2)

]

− h̄

εk − ε − h̄ωpu + i(γk + γ − γ�/2)

h̄

εk − ε ′ − h̄ωpu − i(γk + γ ′ − γ�/2)

× h̄

ε f − ε ′ − h̄ωpu − h̄ωpr − i(γ ′ − γ�)

×
[

h̄

ε − ε ′ − i(γ + γ ′)
− h̄

ε f − εk − h̄ωpr + ε − ε ′ − i(γk + γ�/2 + γ + γ ′)

+
h̄

ε f − ε − h̄ωpu − h̄ωpr − i(γ + γ�)

− h̄

εk − ε − h̄ωpu + i(γk + γ + 3γ�/2)

]}
, (4.11)

a[2]
3 (ε, ε ′, γ , γ ′) = [a[2]

3 (ε ′, ε, γ ′, γ )]∗

= h̄

εk − ε − h̄ωpu + i(γk + γ − γ�/2)

h̄

εk − ε ′ − h̄ωpu − i(γk + γ ′ − γ�/2)



Microscopic analysis of relaxation mechanisms of two-photon photoemission S255

× h̄2

(ε f − εk − h̄ωpr)2 + (γk + γ�/2)2

×
[

h̄

ε − ε ′ − i(γ + γ ′)
− h̄

ε f − εk − h̄ωpr + ε − ε ′ − i(γk + γ�/2 + γ + γ ′)

+
h̄

ε f − εk − h̄ωpr + i(γk + γ�/2 + γ + γ ′)
+

h̄

ε − ε ′ − i(2γk + γ� + γ + γ ′)

]
,

(4.12)

a[2]
4 (ε, γ )

= h̄2

(εk − ε − h̄ωpu)2 + (γk + γ − γ�/2)2

h̄2

(ε f − ε − h̄ωpu − h̄ωpr)2 + (γ − γ�)2

×
[

h̄

2γ
− 2h̄(γ + γ�)

(ε f − ε − h̄ωpu − h̄ωpr)2 + (γ + γ�)2
+

h̄

2γ�

]
, (4.13)

a[2]
5 (ε, ε ′, γ , γ ′) = a[2]

5 (ε ′ε, γ ′, γ )

= 2 Im

[
h̄

εk − ε − h̄ωpu + i(γk + γ − γ�/2)

h̄

εk − ε ′ − h̄ωpu − i(γk + γ ′ − γ�/2)

× h̄

ε f − ε − h̄ωpu − h̄ωpr + i(γ − γ�)

h̄

ε f − ε ′ − h̄ωpu − h̄ωpr − i(γ ′ − γ�)

×
[

h̄

ε − ε ′ − i(γ + γ ′)
+

h̄

ε f − ε − h̄ωpu − h̄ωpr + i(γ + γ�)

− h̄

ε f − ε ′ − h̄ωpu − h̄ωpr − i(γ ′ + γ�)
− h̄

i2γ�

]]
. (4.14)

Here, Î [1](td) and Î [2](td) represent the lowest and second-order terms, respectively. The first
and third terms of Î [1](td) give the IS and SS peaks, respectively, and the second term shows
the interference between the processes accounting for both peaks. In Î [2](td), the terms with
coefficient a[2]

1 give the IS peak and those with a[2]
4 and a[2]

5 give both the IS and SS peaks.
The terms proportional to a[2]

2 and a[2]
3 show the interference between the processes accounting

for both peaks. When γ� is much smaller than the electron and hole linewidths, the terms
providing no information on the lifetimes in time domain (i.e., with coefficients a[1]

3 , a[2]
4 and

a[2]
5 ) become dominant (the spectrum obtained is not exactly identical to (3.1) for continuous

light since the envelope function of the pulse becomes a step function here). This means that
the processes which become available due to the uncertainty between time and energy provide
information on the lifetimes in the analyses in the time domain so that T1 and T2 can be obtained
as different values for TR- and ER-2PPE spectroscopy.

On comparison with the macroscopic theory (see the appendix), the non-interference terms
suggest the relation of Γ1 ∼ γk + γq or Γ1 ∼ γk + γ , where γ denotes the total linewidth of
the secondary electrons and holes. On the other hand, the interference terms rather suggest
Γ1 + Γ2 ∼ γk + γq or Γ1 + Γ2 ∼ γk + γ . In order to investigate the above relations in detail, a
numerical analysis is made by giving E(t) = sech(at t/t�), where at = 1.76 and t� = 60 fs
(full width at half-maximum). Figure 5 shows the TR-2PPE spectrum of Cu(111) obtained. The
photon energies are given by h̄ωpu = εk −εq −0.10 eV = 4.47 eV and h̄ωpr = 2.00 eV so that
the energy spectrum at each td exhibits a two-peak structure. When the shifts due to interference
are ignored, the energy positions of the peaks are estimated from εq + h̄ωpu + h̄ωpr = 6.02 eV
for the SS peak and εk + h̄ωpr = 6.12 eV for the IS peak. Pump–probe correlation traces at
these energy positions are shown in figure 6. In the process accounting for the SS peak, the
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Figure 5. The TR-2PPE spectrum of Cu(111) obtained from the microscopic theory. The origin
of the photoelectron energy is the Fermi level. The pulse envelope function is of sech2 type.
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Figure 6. Pump–probe cross-correlation traces at the SS and IS peaks in the TR-2PPE spectrum
of Cu(111) obtained from the results shown in figure 5.

intermediate state is a virtual state which vanishes rapidly so that the correlation trace becomes
nearly a direct correlation between the pump and probe pulses and hence the maximum of the
trace is fixed at td = 0. The width of the trace can decrease due to the dephasing. When fitting
the results with the macroscopic theory for free parameters T1 and T2 to figure 6 by the least
squares method, the fitting succeeds very well for T2 = 23.4 fs so that the fitting errors are too
small to show. Here, it is noted that T1 = 20.5 fs is obtained by this fitting; however, it will
have no physical meaning because the trace at the SS peak is little affected by T1.

In the process accounting for the IS peak, the intermediate state is a real state which
has a finite lifetime accounting for the shift of the maximum of the correlation trace. In the
macroscopic theory, the shift of the maximum is mainly determined by t� and T1, and the
width of this trace is affected by both T1 and T2. In the same way as for the SS peak, the
fitting of the results with the macroscopic theory to the trace at the IS peak position succeeds
very well for parameters T1 = 9.6 fs and T2 = 22.6 fs. T1 is near [τ−1

k + τ−1
q ]−1 = 12 fs and

smaller than the effective value of [τ−1
k + h̄/2γ ]−1 � τk expected from figure 4. This shows

that the energy relaxation at the surface corresponds to the energy dissipation due to the decay
of the polarization consisting of |q〉 and |k〉 rather than the decay of the single electron in |k〉.
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For both the IS and SS peak positions, the T2 obtained is near τq (confirmed by calculations
for various τk and τq) so that the relation of the hole decay and dephasing can be shown
in the same way as the analysis of the ER-2PPE spectra. However, this relation is still not
quantitatively evident since the analytically expected value of T2, i.e., 2[τ−1

k + τ−1
q − T −1

1 ]−1

or 2[τ−1
k + h̄/2γ − T −1

1 ]−1, becomes negative on using the T1 obtained. Thus it is considered
that the fitting for T2 is subtle work, since the contribution from the interference terms which
contain the information on the dephasing is minor compared with that of the non-interference
terms.

5. Summary

Electronic relaxation in two-photon photoemission from Cu(111) was investigated from the
viewpoint of many-body dynamics. The relations of the macroscopic relaxation times with
the microscopic electron and hole lifetimes are clarified by analysis of the energy spectra for
continuous light and the time-resolved spectra for femtosecond laser pulses. Inelastic scattering
of holes which are excited into the occupied surface states by the pump laser accounts for the
macroscopic dephasing, and accelerates the energy relaxation due to inelastic scattering of
electrons photoexcited into the unoccupied states. T1 and T2 can be obtained as different
values from the analyses in time and energy domains, since in the analysis in the time domain
the information on T1 and T2 is provided by processes which become available for short laser
pulses due to the uncertainty between time and energy. Concerning the energy relaxation,
Γ1 = h̄/2T1 is shown to depend on the detuning from the analysis of the energy spectra,
and T1 � [τ−1

k + τ−1
q ]−1 (Γ1 � γk + γq) is obtained from the analysis of the time-resolved

spectra for −100 meV detuning. Meanwhile, concerning the dephasing, the relation Γ2 = γq

(T2 = 2τq) is clearly demonstrated both analytically and numerically from the analysis of the
energy spectra whereas T2 ∼ τq is obtained numerically from the analysis the time-resolved
spectra although the relation is still not quantitatively evident from the analytical consideration.
For more detailed comparison between the energy- and time-resolved spectra, investigation of
the detuning dependence of the time-resolved spectra will be required as future subjects. For
comparison with experiments, accumulation of experimental data on T1 and T2 as functions of
detuning is looked forward to.
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Appendix. TR-2PPE spectra from the macroscopic theory

In order to investigate the relation with the microscopic theory in section 4, we derive the
formula for the TR-2PPE spectra from the macroscopic theory usually used in the analysis of
the experimental data. On the basis of the density matrix method, we introduce a model of
2PPE from an open two-level system consisting of an occupied state |0〉 and an unoccupied
state |1〉 at the surface to a final state |2〉. We give the unperturbed Hamiltonian as

H macro
0 mm = δmnεm (m, n = 0, 1, 2), (A.1)

and the interactions with the laser pulses as

W macro
10 (t) = [W macro

01 (t)]∗ = −M10E(t)eiωpu t , (A.2)
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W macro
21 (t; td) = [W macro

12 (t; td)]∗ = −M21E(t − td)eiωpr t . (A.3)

Then, within the fourth order with respect to W macro, we solve a set of simultaneous equations:

ih̄
∂ρmacro

mn (t; td)

∂ t
= [H macro

0 + W macro(t), ρmacro(t; td)]mn − iΓmnρ
macro
mn (t; td), (A.4)

ρmacro
00 (t; td) � 1, (A.5)

where m, n = 0, 1, 2 except for m = n = 0. Here the density matrix ρmacro(t; td) is defined
in the Schrödinger representation. The diagonal elements of Γ are given by Γ22 → 0 and
Γ11 = 2Γ1. The off-diagonal elements are given by Γ12 = Γ21 = Γ1, Γ01 = Γ10 = Γ1 +Γ2 and
Γ02 = Γ20 = Γ2. Then we obtain the density of |2〉 by calculating ρmacro

01 = [ρmacro
10 ]∗, ρmacro

11 ,
ρmacro

02 = [ρmacro
20 ]∗, ρmacro

12 = [ρmacro
21 ]∗ and ρmacro

22 in order.
Unlike in the microscopic theory in which the hole decay results in density decay of the

final state of the system as discussed in section 2, it is assumed in the macroscopic theory that
the photoelectron intensity is proportional to ρmacro

22 (t) at t → ∞ since the lifetime of the final
state is given as infinite. Then, for exponential pulses given by E(t) = Ēθ(t) exp(−γ�t/2h̄),
the photoelectron intensity is obtained as

I macro(td) ∝ lim
t→∞ ρmacro

22 (t; td)

= |M21 M10|2|Ē|4[A1θ(td)[e−2Γ1td/h̄ − e−γ�td/h̄ ]

− Re[A2θ(td)[e
[i(ε1−ε0−h̄ωpu)−Γ1−Γ2−γ�/2]td/h̄ − e−γ�td/h̄ ]]

+ A3[θ(td)e−γ�td/h̄ + θ(−td)eγ�td/h̄ ]
]
, (A.6)

A1 = Re

[
h̄2

(ε2 − ε1 − h̄ωpr)2 + (Γ1 + γ�/2)2

× h̄

ε1 − ε0 − h̄ωpu − i(Γ1 − Γ2 − γ�/2)

h̄

i(2Γ1 + γ�)

]
, (A.7)

A2 = h̄

ε2 − ε1 − h̄ωpr − i(Γ1 + γ�/2)

h̄

ε2 − ε0 − h̄ωpu − h̄ωpr + i(Γ2 + γ�)

× h̄

ε1 − ε0 − h̄ωpu − i(Γ1 − Γ2 − γ�/2)

× h̄

ε1 − ε0 − h̄ωpu + i(Γ1 + Γ2 − γ�/2)
, (A.8)

A3 = Re

[[
h̄

ε2 − ε0 − h̄ωpu − h̄ωpr + i(Γ2 + γ�)
− h̄

ε2 − ε1 − h̄ωpr + i(Γ1 + γ�/2)

]

×
[

h̄

ε2 − ε1 − h̄ωpr − i(Γ1 + γ�/2)
+

h̄

i2γ�

]
h̄

ε2 − ε1 − h̄ωpr − i(Γ1 − 3γ�/2)

× h̄

ε1 − ε0 − h̄ωpu − i(Γ1 − Γ2 − γ�/2)

]
. (A.9)

The first term of I macro(td) gives the IS peak and its decay rate in the time domain reflects Γ1.
The second term shows the interference between the processes accounting for the IS and SS
peaks and its decay rate reflects both Γ1 and Γ2. The third term gives the base shape of the
pump–probe correlation traces at both the IS and SS peaks, reflecting the envelope function of
the input laser pulses. In the same way as in the microscopic theory, the terms proportional to
θ(td)e−γ�td/h̄ + θ(−td)eγ�td/h̄ become dominant when γ� 
 Γ1,Γ2.
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